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We propose a method of extracting an approximated evolution equation of distribution of height fluctuations
for a class of discrete growth models of rough surfaces where the behavior of local slopes can be described by
a Markov process. Using the Markov property of the fluctuating field, the evolution equation is obtained as a
map describing the time evolution averaged over possible growth paths. Applying the method to a
�1+1�-dimensional restricted solid-on-solid model, we obtain a map with finite degrees of freedom. The
obtained map describes well the averaged evolution of surfaces.
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I. INTRODUCTION

In the past couple of decades a lot of attention has been
given to the formation of rough surfaces under nonequilib-
rium conditions �1�. One of intriguing features of the surface
roughening is a self-organized nature of the growth. An ini-
tially flat surface evolves to a self-affine one characterized by
the roughness exponent � in the Family-Vicsek scaling an-
satz �2� without external parameter tuning. One way to study
the pattern selection mechanism and its self-organized nature
is to investigate the evolution of probability distribution for
height difference between two positions, �h=h�x1�−h�x2�.
Recently, Jafari et al. investigated a Markov property of fluc-
tuating height differences of a deposited copper film �3�. For
the probability density function P��h ,�x� in terms of the
length scale �x, they have checked the validity of the
Chapman-Kolmogorov equation

p��h2,�x2��h1,�x1�

=� d��h3�p��h2,�x2��h3,�x3�

�p��h3,�x3��h1,�x1� , �1�

where p��hi ,�xi ��hj ,�xj� is a conditional probability. Sat-
isfying Eq. �1�, for any value of �x3 in the interval �x2
��x3��x1, is a necessary condition for the field to be a
Markov process in spatial dimensions �4�. Using the method
proposed by Friedrich and Peinke �5,6�, they have obtained a
Fokker-Plank equation by measuring the Kramers-Moyal co-
efficients and shown that the obtained equation regenerates
surfaces with similar statistical properties. The stochastic
analysis based on the theory of the Markov process provides
us another point of view to study the interfacial problem
�7,8�.

In this work, our attention is focused on the growth pro-
cess generating rough surfaces showing the Markovian be-
havior and we propose a method of extracting an approxi-
mated evolution equation of distribution of height
differences in such a system. In a previous paper �9�, we

have introduced the probable growth �PG� in discrete growth
models to investigate the behaviors of relaxation to the
steady state for arbitrary initial conditions, where the PG
means the time evolution averaged over all possible growth
paths starting with a given surface. The PG path is uniquely
determined for a given surface. This enables us to introduce
a deterministic equation into the stochastic growth. We have
also clarified that the number of subsets of height differ-
ences, nt���h��, contained in the surface at time t, plays a
role of a dynamical variable for the evolution equation asso-
ciated with the PG in a certain class of growth models. In
this paper we extend this idea to a restricted solid-on-solid
�RSOS� model �10�, which is a prototype generating rough
surfaces without overhangs. For sufficiently large system
size L, nt���h�� /Ld gives an estimation for the probability of
finding ��h� in the whole surface in d+1 dimensions.
Thanks to the Markov property, the probability of finding a
given surface can be obtained from a product of conditional
probabilities. Then the problem of identifying the probability
distribution of height differences can be reduced to obtaining
the conditional probabilities or nt���h��. Considering the PG,
the evolution equation of nt���h�� can be simplified as a map
with finite degrees of freedom. A fixed point of the map
gives an estimator for the distribution of height differences in
the steady state.

II. A MAP ASSOCIATED WITH THE
PROBABLE GROWTH

In this section, we present a map with finite degrees of
freedom to describe the PG of �1+1�-dimensional RSOS in-
terfaces for arbitrary initial conditions. It is worthy to recon-
sider the interfacial problem in 1+1 dimensions to illustrate
our method although the problem has been extensively stud-
ied previously.

The growth algorithm of the RSOS model is as follows:
Select randomly a site on a one-dimensional lattice and per-
mit growth by letting the height hi of the interface at site
i increase by one unit, provided that the RSOS restriction on
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the height differences ��h � =0,1 , . . . ,N is obeyed at all
stages. We set hereafter N=1 for simplicity and our results
can be straightforwardly extended to the case of N�1. One
can interpret the algorithm for the RSOS growth as that for
the dynamics of height differences. Denoting the height dif-
ference by s, the growth of hi�hi+1 corresponds to the
change of a pair of successive variables, �si ,si+1�� �si

+1,si+1−1�. We here use periodic boundary conditions. The
growth algorithm of the system is to randomly select a pair
�si ,si+1� and to perform the change provided that �si � =0
or 1 for i=1,2 , . . . ,L is satisfied at all stages. An allow-
able change for �si ,si+1� is limited in the set D
= ��−1,0� , �0,1� , �0,0� , �−1,1�� by the RSOS restriction.

Under the mapping between height differences and par-
ticles on a one-dimensional lattice, this algorithm corre-
sponds to an extended process of the two-species asymmetric
exclusion model �ASEP� on a ring, which contains right-
moving particles s=−1 and left-moving particles s=1 with
pair annihilation of particles, �1,−1�� �0,0�, and pair cre-
ation of particles, �0,0�� �1,−1�. The two-species ASEP,
without creation and annihilation of particles, can be solved
exactly by using a matrix formulation �11,12�. The steady
state of the ASEP depends on an initial density of particles in
a ring geometry since the number of particles are conserved
during the time evolution. In contrast, the density of particles
in the steady state of the RSOS model is determined in a
self-organized way through creation and annihilation of par-
ticles. The behaviors of relaxation to the steady state differ
from each other although both models belong to the same
universality class.

We now consider the evolution of a set �s1 ,s2 , . . . ,sL� in
the �1+1�-dimensional RSOS model. Let pt�s1 ,s2 , . . . ,sL� be
the probability of finding �s1 ,s2 , . . . ,sL� at time t and
pt��si� � �sj�� be the conditional probability of finding a subse-
quence �si� when �sj� is given, where t is equal to the mass of
the cluster except a constant. We introduce the following
relations into the conditional probabilities

�2a�

�2b�
The interaction between separated sites is called the short-
range interaction if m is finite, throughout this literature. The
system can be reduced to a Markov process in length scales
greater than m and the interaction length m corresponds to
the Markovian length in Ref. �3�.

We have numerically checked the Markov property of the
process by calculating the correlation function

Cs�j� =
�sisi+j�

�si
2�

, �3�

where the double angular brackets represent an ensemble av-
erage in the steady state. Figure 1 shows Cs�j� obtained by
averaging over 107 samples for L=1000. We have used free
boundary conditions in calculations of Cs�j�. For periodic

boundary conditions, the constraint s1+s2+ ¯ +sL=0 leads
to 	 jCs� j�=0 and this relation affects on estimation of
asymptotic behaviors since Cs� j� becomes negative for large
j. In Fig. 1 one can see that a crossover occurs at jc
10 and
Cs� j� decays exponentially for j� jc. This implies that the
interaction is of the short-range type. For systems in which
the correlation length of height differences is finite, Eqs. �2a�
and �2b� obviously hold for m sufficiently greater than the
correlation length because two sites separated by m are inde-
pendent of each other in a statistical sense. We comment on
estimating the interaction length m in the case of algebra-
ically decaying Cs� j�, which is expected in globally coupled
interactions or �2+1�-dimensional growth. In this case the
interaction length should be directly estimated by checking
the validity of the Chapman-Kolmogorov equation for the
conditional probabilities, or by measuring the Kramers-
Moyal coefficients.

Based on Eqs. �2a� and �2b�, we can find the probability
pt�s1 , . . . ,sL� to be proportional to the product of conditional
probabilities 	ipt�si+m−1 �s,si+1 , . . . ,si+m−2�. Let Cm be a sub-
sequence with length m and nt�Cm� be the number of Cm

contained in �s1 ,s2 , . . . ,sL� at time t. For Cm= �
1 , . . . ,
m�,
nt�Cm� is defined by

nt�Cm� = 	
j=0

L−1 ��
i=1

m

�si+j,
i
 , �4�

where � denotes the Kronecker’s delta. Note that nt�Ck� for
k�m is obtained by summing up nt�Ck ,Cm−k� or nt�Cm−k ,Ck�
over all possible Cm−k’s. The product of conditional prob-
abilities can be obtained with using the estimation pt�Cm�
=nt�Cm� /L for sufficiently large L, since the conditional
probability pt�si+m−1 �si , . . . ,si+m−2� is given by

FIG. 1. Semilog plot of the correlation function Cs�j� for L
=1000.
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pt�si+m−1�si, . . . ,si+m−2� =
pt�si, . . . ,si+m−2,si+m−1�

pt�si, . . . ,si+m−2�
. �5�

We thus concentrate on the evolution of 3m-dimensional vec-
tor nt under Eqs. �2a� and �2b�.

To investigate the time evolution of the system, we next
consider the map associated with averaged nt introduced in
Ref. �9�. Denoting the operation of adding a particle to the
cluster by T, the most probable value of nt for a given n0 is
defined by

�nt� =
1

Mt
	 T tn0, �6�

where Mt is the number of all possible growth paths starting
from n0 and the sum is taken over all possible paths. Then
�nt� gives rise to a deterministic time evolution for the sto-
chastic growth starting with n0. Imagine that a pair of suc-
cessive variables �s ,s���D in the set �s1 ,s2 , . . . ,sL� becomes
�s+1,s�−1� at time t. Let Kt�Cm ;s ,s�� be the averaged value
of nt+1�Cm�−nt�Cm� when s and s� are given. Using
Kt�Cm ;s ,s��, the most probable value of nt+1�Cm� for a given
nt�Cm� can be expressed by

�nt+1�Cm�� = nt�Cm� +

	
�s,s���D

Kt�Cm;s,s��nt�s,s��

	
�s,s���D

nt�s,s��
. �7�

Here, nt�s ,s�� /	�s,s���Dnt�s ,s�� is the probability of choosing
�s ,s�� from the pairs in D. For periodic boundary conditions,
one can set sm=s and sm+1=s� without loss of generality
because of the translational invariance of the system. Then
Kt�Cm ;s ,s�� is obtained from the change of the subsequence
C2m= �s1 ,s2 , . . . ,s2m� between at time t and t+1. The differ-
ence of the number of Cm= �
1 ,
2 , . . . ,
m� between at t and
t+1 is given by

��Cm;C2m� = 	
i=0

m ��
j=1

m

�
j,si+j+gi+j
− �

j=1

m

�
j,si+j
 , �8�

with gi+j =�i+j,m−�i+j,m+1, and the conditional probability of
finding C2m for a given pair �sm ,sm+1� is estimated by
nt�C2m� /nt�sm ,sm+1�. These relations lead to the expression

Kt�Cm;s,s�� = 	
C2m

�sm,s�sm+1,s�	
i=0

m
��Cm;C2m�nt�C2m�

nt�sm,sm+1�
. �9�

Performing the sum on C2m, Kt is rewritten as

Kt�Cm;s,s�� =
1

nt�s,s�����
1,s�−1 − �
1,s��nt�s,s�,
2, . . . ,
m�

+ ��
m,s+1 − �
m,s�nt�
1, . . . ,
m−1,s,s��

+ 	
i=1

m−1

��
i,s+1�
i+1,s�−1 − �
i,s
�
i+1,s��

�nt�
1, . . . ,
i−1,s,s�,
i+2, . . . ,
m�� . �10�

Using Eqs. �2a� and �2b�, and the estimation of pt�Cm�
=nt�Cm� /L, the numbers of subsequences with length m+1
in Eq. �10� are estimated by

nt�s,s�,
2, . . . ,
m� =
nt�s,s�,
2, . . . ,
m−1�nt�s�,
2, . . . ,
m�

	

m

nt�s�,
2, . . . ,
m�
,

�11a�

nt�
1, . . . ,
m−1,s,s��

=
nt�
1, . . . ,
m−1,s�nt�
2, . . . ,
m−1,s,s��

	

1

nt�
1, . . . ,
m−1,s�
. �11b�

Substituting Eqs. �10�, �11a�, and �11b� into Eq. �7� gives
�nt�Cm�� as a function of nt. We here replace nt with �nt�,
which simplifies the expression of the evolution equation
although the validity of replacement should be checked nu-
merically. Then we have a map �nt+1�=G��nt�� defined by

�nt+1�Cm�� = �nt�Cm�� +
1

	
�s,s��D

�nt�s,s���
	

�s,s���D ���
1,s�−1 − �
1,s��
�nt�s,s�,
2, . . . ,
m−1���nt�s�,
2, . . . ,
m��

	

m

�nt�s�,
2, . . . ,
m��

+ ��
m,s+1 − �
m,s�
�nt�
1, . . . ,
m−1,s���nt�
2, . . . ,
m−1,s,s���

	

1

�nt�
1, . . . ,
m−1,s��

+ 	
i=1

m−1

��
i,s+1�
i+1,s�−1 − �
i,s
�
i+1,s���nt�
1, . . . ,
i−1,s,s�,
i+2, . . . ,
m��� , �12�
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with Cm= �
1 ,
2 , . . . ,
m�. In actual iterations of G, if the
denominator vanishes in each term of the right-hand side of
Eq. �12�, the corresponding term is set to zero. The solution
�n*� of the fixed-point equation, or p*= �n*� /L, gives us an
estimation for the probability of finding a given surface in
the steady state. Equations �2a� and �2b� can be easily ex-
tended in higher dimensions and the map can be obtained in
a similar way.

In order to check the validity of the map G, we have
carried out numerical simulations of the RSOS model with
periodic boundary conditions and the map G from m=2 up to
6. Figure 2 shows the evolution of ��nt�0,0�� , �nt�0,1��� of
the RSOS surface with an initially flat interface for L
=1000 and the orbits of the map with the same initial con-
dition, n0�0,0 , . . . ,0�=1000 and 0 otherwise. The orbits of G
are obtained from 4�104 iterations of the map, and the PG
path of the RSOS interface is estimated by the ensemble
average over 8�103 samples. Our simulations show that the
PG path of the RSOS surfaces is in excellent agreement with
the corresponding orbit of the map for m=6. We have also
checked the fixed point n* of the map with the probability p*

of finding a subsequence in the steady state. The results for
L=1000 are summarized in Table I. p* is estimated numeri-
cally by the values after 105 iterations of the map. The fixed
point is close to the phase point corresponding to the uncor-
related random state, p*�Cm�=1/3m for all Cm’s, and the ob-
tained probabilities p*�0,0� and p*�0,1� for m=6 agree with
those of the RSOS model within 0.2%.

We next demonstrate that the map G for m=6 well de-
scribes the averaged growth path for any given initial condi-
tion. Figure 3�a� shows the evolution of the vector
��nt�0,0�� , �nt�−1,0��� in the RSOS model for L=100 and
Fig. 3�b� shows the corresponding orbits of the map for m
=6. The initial conditions are chosen randomly from RSOS
clusters consisting of 105 particles and each orbit is averaged
over 8�103 samples in Fig. 3�a�. The phase portrait of the
map is in good agreement with that of the RSOS model.

III. DISCUSSION AND SUMMARY

We consider the statistical property of height fluctuations
associated with the fixed point of the map G. Since the
height at site i+� in a �1+1�-dimensional system is given by
hi+�=hi+si+1+si+2+ ¯ +si+�, the height-height correlation
function Ch��� is given by

Ch���2 � � �hi+� − hi�2 �

= � � si
2 � + 2	

j=1

�−1

��− j� � sisi+j � , �13�

which shows that the height-height correlation function is

FIG. 2. Orbits of G projected on ��nt�0,0�� , �nt�0,1��� for m
=2,3 ,6 and the PG path of the RSOS interface starting from a flat
interface. It is hard to distinguish the growth path from the orbit of
G for m=6 by the resolution of this figure.

TABLE I. Estimation of probabilities in the steady state for L
=1000. The probability p*�C2� is estimated by n*�C2� /L for C2

= �0,0� and �0,1�. Numerical results for the RSOS model are also
shown for comparison.

m p*�0,0� p*�0,1�

2 0.119870 0.093592

3 0.116475 0.094384

4 0.115761 0.094392

5 0.115518 0.094372

6 0.115403 0.094362

RSOS model 0.115295 0.094367

FIG. 3. Time evolution of ��nt�0,0�� , �nt�1,0��� of the RSOS
model and the map G for L=100. The symbol � denotes the initial
phase point for each orbit. �a� Orbits of the RSOS model. �b� Orbits
of the map G for m=6 with the same initial conditions in �a�.
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determined by Cs �j�. The roughness exponent � can be es-
timated from the behavior of Ch���
�� and Eq. �13� can be
easily extended in higher dimensions. For the short-range
interaction, the average �sisi+j� in Eq. �13� can be obtained
from the second largest eigenvalue of a transfer matrix V
defined by

VC�C = ��
j=1

m−2

�uj�,uj+1
p*�um−1� �C� , �14�

with C= �u1 , . . . ,um−1� and C�= �u1� , . . . ,um−1� �. Using the
transfer matrix, the fixed point p* gives us an estimation for
averaged physical quantities under consideration in the
steady state. Let �i be the ith eigenvalue of V with �1
�2

¯. From the relations p*�C��=	CV�0�C�Cp*�C� and
	C�V�0�C�C=1, it is easy to show that the largest eigenvalue
�1 is unity and 1
 ��i� holds for any i. When the invariant
probability measure of the system is unique, �1 is greater
than �2 for finite m. Then �sisi+j� is estimated by �2

j−1 for
sufficiently large L, which leads to the estimation that Ch���2

is of order of � from Eq. �13�. It follows that, for large � and
L

Ch��� � �1/2, �15�

so we have �=1/2 for interfaces described by a Markov
process in 1+1 dimensions. Note that the value of �=1/2 is
also obtained from interfaces generated by uncorrelated
jumps of height, which is the limiting case of
p��h2 ,�x2 ��h1 ,�x1�= p��h2 ,�x2�p��h1 ,�x1� in Eq. �1�.
From an extended identity of Eq. �13� in higher dimensions,
one can see that the Ch�r�2 is bounded by r if Cs�r��0
except r=0, where r is the distance between sites. In such
systems the roughness exponent lies in the interval 0��
�1/2. We have investigated Cs�r� numerically in a
�2+1�-dimensional RSOS model and the result shows that
Cs�r� is negative for r�0. It is of interest to investigate the
Markov property in spatial dimensions in the growth process
showing �=1/2 in 1+1 dimensions and ��1/2 in 2+1
dimensions �10,13,14,18–22�. It should be noted that the es-
timation of � in 2+1 dimensions is not as easy as in 1+1
dimensions even for the system with short-range interaction.
V is defined as a row-to-row transfer matrix and the size of
the matrix becomes infinitely large in the limit L goes to
infinity. The relation between the value of � in 2+1 dimen-
sions and the Markov property of conditional probabilities is
an open problem at the present stage.

In an analogy of statistical mechanical physics, our
method is equivalent with introducing a Hamiltonian to the
system in 1+1 dimensions, defined by

pt�s1,s2, . . . ,sL� = Z−1 exp�− H�s1, . . . ,sL�� , �16�

with Z=	exp�−H�. In the case of short-range interaction, H
is given as a sum of Hi defined by

Hi�si,si+1, . . . ,si+m−1� = − ln pt�si+m−1�si,si+1, . . . ,si+m−2� .

�17�

For the RSOS model the Hamiltonian is expanded in the
form

H = J1�t�	
i

si + J2�t�	
i

si
2 + J3�t�	

i

sisi+1

+ J4�t�	
i

sisi+1
2 + J5�t�	

i

si
2si+1 + ¯ . �18�

Here, J�t�= �J1�t� ,J2�t� , . . . � can be determined from �nt� and
J= �0,0 , . . . � corresponds to the uncorrelated state. From the
form of H it is almost trivial that �=1/2 for systems with the
short-range interaction. There exist other growth models
showing behaviors characterized by ��1/2 in 1+1 dimen-
sions �1�. For these growth models we can conclude that the
interaction between local slopes is not of the short-range type
in observed length scales, that is, the interaction length is
m
L or infinite. In the case of long crossovers the situation
is more complicated than that of the growth discussed here
and the scaling property may be described by a generalized
scaling function with local scaling indices �15–17�.

In 2+1 dimensions, the estimation of � is a formidable
task for the system under consideration, as has been men-
tioned before. However, we can obtain some insight on the
roughness exponent if the system has a Markov property for
conditional probabilities. Numerical simulations have shown
that ��1/2 in several growth models, and ��1/2 suggests
that the correlation function of height differences decays al-
gebraically. In our method, that algebraic behavior is under-
standable if the system reaches a critical state. The property
of becoming critical without adjusting external parameters
has been referred to as self-organized criticality �23�. This
criticality of the surface roughening can be discussed more
concretely for the single-step model �18�. In the single-step
model a surface grows and roughenss under the restriction
that the height of the deposit differs from the height of its
nearest neighbors by exactly one lattice unit, and in 2+1
dimensions the single-step interface can be transformed to
the six-vertex model by mapping height differences to in-
coming and outgoing arrows. In the six-vertex model there
are four phases in terms of vertex energies, or Boltzmann
weights �24�. We expect that the fixed point of the map G for
the �2+1�-dimensional single-step growth corresponds to a
phase point on a critical line between phases in the parameter
space of vertex energies, which is planned to report else-
where.

In summary, we have presented a method of extracting an
approximated evolution equation for the distribution of
height fluctuations from growth rules in stochastic discrete
models generating rough surfaces with a Markov property in
spatial dimensions. Using the Markov property of the sur-
face, it has been shown that the evolution equation of fluc-
tuating field can be described by a map with finite degrees of
freedom. Applying the method to a �1+1�-dimensional
RSOS model, the map has been derived analytically under
assumptions on conditional probabilities. The validity of the
obtained map has been checked numerically and the results
are in good agreement with the averaged evolution of RSOS
interfaces. In an analogy of statistical mechanics, our method
is equivalent to introducing a Hamiltonian with finite terms
to the system under consideration. From a naive consider-
ation on the correlation function, our method suggests
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the self-organized criticality in 2+1 dimensions. The method
presented in this work will provide us with a useful
tool to investigate the probability distribution of height
fluctuations.
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